

UFACTORY xArm 机械爪

用户手册

使用前请仔细阅读本手册

V 2.3.0

目录

1. 点	总体了	诏	3
	1.1.	机械爪简要介绍	3
	1.2.	设置与控制	3
	1.3.	安全	3
2. 3	安装		6
	2.1.	发货清单	7
	2.2.	机械安装	7
	2.3.	电气设置	9
3. x	Arm	机械爪的控制方式	10
	3.1.	用 xArm Studio 控制 xArm 机械爪	.10
	3.2.	用 Python-SDK 控制 xArm 机械爪	. 12
	3.3.	用 ROS-SDK 控制 xArm 机械爪	12
	3.4.	用私有 TCP 协议通信协议控制 xArm 机械爪	.12
	3.5.	用 Modbus RTU 通信协议控制 xArm 机械爪	.24
4. ‡	反警ら	5处理	. 28
5. x.	Arm	机械爪技术规格	30

1.总体介绍

1.1. 机械爪简要介绍

xArm 机械爪

机械爪是机器人末端工具,能够动态抓取物体。

机械爪的位置数值范围是:-10 到 850,数值越大,机械爪张开程度就越大,反之,数值越小, 机械爪张开程度就越小。如果出现夹合不紧的情况,可以发送负值。

1.2. 设置与控制

xArm 机械爪通过一条电缆直接供电和控制,该电缆用于 24V 直流供电和基于 RS-485 的 Modbus RTU 通信。

1.3. 安全

警告

操作员在使用 xArm 机械爪之前必须已阅读并理解手册中的所有说明。

注意

术语"操作员"是指负责在 xArm 机械爪上进行以下任何操作的任何人:

- 安装
- 控制
- 维护
- 检查
- 标定
- 编程
- 退役

本文档说明了 xArm 机械爪从安装到运行再到使用的整个生命周期的一般操作。

本文档中的图形和照片是代表性的示例,它们与交付的产品之间可能存在差异。

1.3.1. 警告

注意

不遵守警告而使用抓取工具,可能导致操作人员受伤或设备损坏。

警告

在操作机器人之前,必须正确固定好夹具。

请勿安装或操作已损坏或缺少零件的机械爪。

切勿为机械爪通交流电。

确保所有接线端子稳定连接在机械臂和机械爪两端。

请始终使用建议的电气连接。

在初始化机械臂程序之前,请确保没有人在机械臂和机械爪路径中。

始终不要超过机械爪的有效载荷。

根据您的应用情况,相应设置机械爪的速度。

接通电源时, 手指和衣服应远离机械爪。

请勿在人或动物身上使用机械爪。

1.3.2. 风险评估和最终应用

xArm 机械爪用于工业机器人,最终应用中使用的机器人、抓取器和任何其他设备必须进行 风险评估。机器人集成商的责任是确保遵守所有本地安全措施和规定。根据不同的应用,可 能存在需要采取额外保护/安全措施的风险,例如,机械爪操作的工件可能对操作员具有固 有的危险。

1.3.3. 用途

xArm 机械爪用于抓取并临时固定或保持物体。

警告

机械爪不适用于对物体或表面施加力。

该产品旨在安装在机器人或其他自动化设备上。

信息

始终遵守有关自动化安全和通用机器安全的本地和国家法律,法规和指令。

本设备只能在其技术数据范围内使用。产品的任何其他使用均被视为不当和意外使用。

对于因任何不当使用或不当使用引起的任何损坏, UFACTORY 将不承担任何责任。

2.安装

以下小节将指导您完成 xArm 机械爪的安装和常规设置。

- (1) 发货清单
- (2) 机械安装部分
- (3) 电气设置部分

警告

安装之前:

阅读并理解与 xArm 机械爪有关的安全说明。

根据发货清单和订单验证包裹。

备有需求中列出的所需零件。

安装时:

满足环境条件。

在牢固地固定住机械爪并清除危险区域之前,请勿操作机械爪或打开电源。

6

机械爪的手指可能会移动并造成伤害或损坏。

2.1. 发货清单

2.1.1. 通用套件

xArm 机械爪套件通常包括以下物品(如下图所示):

xArm 机械爪

十字沉头螺丝 M6*8(4 个)

十字沉头螺丝M6*8(4个)

UFACTORY xArm机械爪

通用套件图

2.2. 机械安装

安装机械爪流程:

1. 使机械臂运动到安全位置(避免碰到机械臂安装表面或者其他设备);

2. 机械臂断电(按下控制器急停按钮);

- 3. 用 2 颗 M6 螺丝把机械爪固定在机械臂末端;
- 4. 用机械爪连接线连接机械臂和机械爪。

注意:

- 接通机械爪连接线时一定要使机械臂断电,急停开关处于按下状态,机械臂电源指示灯 熄灭,避免热插拔引起机械臂故障;
- 2. 因机械爪连接线长度限制,机械爪接口与机械臂工具端接口需在相同的方向;
- 机械爪连接线接通机械爪和机械臂时注意务必对齐两端接口的定位孔,机械爪连接线的 公针较为纤细,避免在拆装时使公针弯曲。

2.3. 电气设置

xArm 机械爪通过单根设备电缆与 xArm 机械臂建立电源和通信。设备电缆为机械爪提供 24V 电源,并实现了与机械臂控制器的串行 RS485 通信。

警告:

请断开机械臂电源后,再用机械爪连接线将机械爪和机械臂连接在一起。

2.3.1. 引脚接口

机械爪连接接口如下图所示。

电缆内部的 12 条线有不同颜色,不同颜色代表不同功能,请参见下表:

线序	颜色	信号
1	棕	+24V (电源)
2	蓝	+24V (电源)

3	白	0V (GND)	
4	绿	0V (GND)	
5	粉	用户 485-A	
6	黄	用户 485-B	
7	黑	工具输出 0 (TO0)	
8 灰		工具输出 1 (TO1)	
9	红	工具输入 0 (TIO)	
10	紫	工具输入 1 (TI1)	
11	橙	模拟输入 0 (Al0)	
12	浅绿	模拟输入 1 (Al1)	

3.xArm 机械爪的控制方式

3.1. 用 xArm Studio 控制 xArm 机械爪

1. 控制 xArm 机械爪

● 在实时控制界面控制 xArm 机械爪

控制方法:

1) 通过拖动进度条来控制机械爪开合的大小。

	机械爪 ~	初始点 未端调平	手动模式	STOP
د Blockly	300	速度 🗕 🗕	50%	0
G	 轨迹录制 ★ ★ test01 ★ 0000 0005 000	J1 J2 J3 J4 J5 J6		ж ба
හු	 产品信息 产品型号 xArm6 机械管IP 192.168.1.36 四件版本 2.2.111 软件版本 2.2.104 	基坐标 ↓ Z. Z+ X* Y+ XYZ Y. X	RZ- RZ+ RY+ RX- RXYZ RX+ RY-	秋志: 正常 X Y Z 続式: 位置 207 mm 0 mm 112 mm 角報: 0.00 % Roll Plich Yaw 実現: 永平 180 ° 0 ° 0 ° ● J1 ● J2 ● J3 ● J4 ● J5 ● J6 0 0 0 0 0 0 0

● 通过 Blockly 编程来控制 xArm 机械爪

xArm Gripper.Blockly

? 备	注 Install xArm Gripper								
重置计	数器								
设置TC	P速度: 200 mm/s								
设置TC	₽加速度: [5000] mm/s²								
	动 J1 101 J2 -11.1 J3 -56.4 J4 0 J5 67.5 J6 24.5 Radius -1 Wait true - 移动 - 修改								
设置xA	。 设置xArm机械爪 位置 1800 速度 15000 Wait true ● 《移动 》 修改								
循环(10 次								
运行(计数器自增加								
	备注 Set TCP payload as the xArm Gripper								
	设置负载 xArm机械爪 → 重量 0.82 × 0 × 0 Z 48								
	笛卡尔运动 X -79.8 Y 412.1 Z 400 Roll 180 Pitch 0 Yaw 76.5 Radius 0 Wait false 移动 修改								
	笛卡尔运动 X -79.8 Y 412.1 Z 170 Roll 180 Pitch 0 Yaw 76.5 Radius 0 Wait false _ 移动 _ 修改								
	备注 Pick object								
	设置xArm机械爪 位置 0 速度 5000 Wait true - 6 移动 6 修改								
	备注 Set TCP payload as the xArm Gripper and Object								
	设置负载 gripper+object 重量 1.2 × 0 × 0 z 48								
	苗卡尔运动 X -79.8 Y 412.1 Z 400 Roll 180 Pitch 0 Yaw 76.5 Radius 0 Wait false · 比移动 计修改								
	笛卡尔运动 X -350 Y 412.1 Z 400 Roll 180 Pitch 0 Yaw 76.5 Radius 0 Wait false · 人移动 修改								
	笛卡尔运动 X -350 Y 412.1 Z 170 Roll 180 Pitch 0 Yaw 76.5 Radius 0 Wait false · 移动 修改								
	备注 Drop object								
	设置xArm机械爪 位置 800 速度 5000 Wait true 修移动 修修改								
	备注 Set TCP payload as the xArm Gripper								
	设置负载 XArm机械爪 ▼ 重量 0.82 X 0 Y 0 Z 48								
	笛卡尔运动 X -350 Y 412.1 Z 400 Roll 180 Pitch 0 Yaw 76.5 Radius 0 Wait false 移动 6 修改								

这段程序的作用:执行此程序,可控制机械爪在指定位置夹取目标物,然后将目标物放到特 定的位置。

注意:

当机械爪安装到机械臂上时,在 Blockly 程序中应当设置 TCP 负载,当机械爪夹取物体
 后,其重量发生变化,则需要设置新的 TCP 负载。

3.2. 用 Python-SDK 控制 xArm 机械爪

对于使用 Python-SDK 控制 xArm 机械爪的详细内容请见点击下面的链接查看:

https://github.com/xArm-Developer/xArm-Python-SDK/blob/master/example/wra pper/common/5004-set_gripper.py

3.3. 用 ROS-SDK 控制 xArm 机械爪

请参照 ROS 包中附带的 ReadMe 文件中的第 5.7.7 节来控制 xArm 机械爪的打开和关闭。

ROS-SDK 下载地址:

https://github.com/xArm-Developer/xarm_ros

3.4. 用私有 TCP 协议通信协议控制 xArm 机械爪

本节主要阐述了如何通过调用 xArm 控制器的私有 TCP 协议来控制 xArm 机械爪。

3.4.1. 私有 TCP 协议通信协议

私有 TCP 协议:

Modbus 协议是一项应用层报文传输协议,有 ASCII、RTU、TCP 三种报文类型。标准 Modbus 协议物理层接口有 RS232、RS422、RS485 和以太网接口,采用 master/slave 方式通信。

私有 TCP 协议通信过程:

- (1) 建立 TCP 连接
- (2) 准备 Modbus 报文
- (3) 使用 send 命令发送报文
- (4) 在同一连接下等待应答
- (5) 使用 recv 命令读取报文,完成一次数据交换
- (6) 通信任务结束时,关闭 TCP 连接

参数:

默认 TCP 端口: 502 协议标识: 0x00 0x02 控制(当前只有这一个)

关于用户使用通信协议组织数据的大小端问题:

在本章节中,数据解析均为大端解析。

3.4.2. 读取 xArm 机械爪寄存器

3.4.2.1. 寄存器功能

读取保持寄存器					
请求指令格式					
	事务标识	2 Bytes	0x00, 0x01		
Modbus TCP 包头	协议标识	2 Bytes	0x00, 0x02		
	长度	2 Bytes	0x00, 0x08		
	寄存器	1 Byte	0x7C		
参数	状态	1 Byte	0x00		
内部使用	主机 ID	1 Byte	0x09		
	机械爪 ID	1 Byte	0x08		
Modbus RTU 数	功能码	1 Byte	0x03		
据	寄存器起始地址	2 Bytes	Address		
	寄存器数量	2 Bytes	N*		
	响应指	令格式			
	事务标识	2 Bytes	0x00, 0x01		
	协议	2 Bytes	0x00, 0x02		
Modbus TCP 包头	长度	2 Bytes	6+N*x2		
	寄存器	1 Byte	0x7C		
	状态	1 Byte	0x00		
内部使用	主机 ID	1 Byte	0x09		
	机械爪 ID	1 Byte	0x08		
Modbus RTU 数	功能码	1 Byte	0x03		
据	字节数	1 Byte	N*x2		
	寄存器值	N* x2	Value		

注: N* = 寄存器数量

Address= 寄存器起始地址 (见下面列表)

寄存器:

	寄存器起始地址	寄存器值		
获取机械爪状态	0x0000	2 hvtes	停止状态 : 0x0000	运动状态: 0x0001
		ZDytes	夹取状态 : 0x0010	

获取机械爪位置	0x0702	4bytes	位置取值范围: 0xFFFFFFB-0x00000320
<u> </u>	0x000F	2bytes	有错误:其他返回值都代表有错误(除0以外)
5/-2/10/00/17/16 kA			无错误: 0×0000

3.4.2.2 示例

1. 获取机械爪状态

获取机械爪状态						
请求指令格式						
	事务标识	2 Bytes	0x00, 0x01			
Modbus TCP 包头	协议标识	2 Bytes	0x00, 0x02			
	长度	2 Bytes	0x00, 0x08			
	寄存器	1 Byte	0x7C			
内部使用	主机 ID	1 Byte	0x09			
	机械爪 ID	1 Byte	0x08			
Modbus RTU 数据	功能码	1 Byte	0x03			
	寄存器起始地址	2 Bytes	0x00, 0x00			
	寄存器数量	2 Bytes	0x00, 0x01			
	响应指令标	各式				
	事务标识	2 Bytes	0x00, 0x01			
Modbus TCP 包头	协议	2 Bytes	0x00, 0x02			
	长度	2 Bytes	0x00, 0x08			
	寄存器	1 Byte	0x7C			
参数	状态	1 Byte	0x00			
内部使用	主机 ID	1 Byte	0x09			
	机械爪 ID	1 Byte	0x08			
Modbus RTU 数据	功能码	1 Byte	0x03			
	字节数	1 Byte	0x02			
	寄存器值(机械爪在运动状态)	2 Bytes	0x00, 0x01			

2. 获取机械爪位置

获取机械爪位置				
请求指令格式				
Modbus TCP 包头	事务标识	2 Bytes	0x00,0x01	

		1	
	协议	2 Bytes	0x00,0x02
	长度	2 Bytes	0x00,0x08
	寄存器	1 Byte	0x7C
内部使用	主机 ID	1 Byte	0x09
	机械爪 ID	1 Byte	0x08
Modbus RTU 数据	功能码	1 Byte	0x03
	寄存器起始地址	2 Bytes	0x07,0x02
	寄存器数量	2 Bytes	0x00,0x02
	响应指领	令格式	
	事务标识	2 Bytes	0x00,0x01
Modbus TCP 包头	协议	2 Bytes	0x00,0x02
	长度	2 Bytes	0x00,0x0A
	寄存器	1 Byte	0x7C
参数	状态	1 Byte	0x00
内部使用	主机 ID	1 Byte	0x09
	机械爪 ID	1 Byte	0x08
Modbus RTU 数挥	功能码	1 Byte	0x03
	字节数	1 Bytes	0x04
	寄存器值(位置信息:1mm)	4 Bytes	0x00,0x00,0x00,0x01

3. 获取机械爪错误

获取机械爪错误

请求指令格式				
	事务标识	2 Bytes	0x00,0x01	
Modbus TCD 句头	协议	2 Bytes	0x00,0x02	
	长度	2 Bytes	0x00,0x08	
	寄存器	1 Byte	0x7C	
内部使用	主机 ID	1 Byte	0x09	
	机械爪 ID	1 Byte	0x08	
Modbus RTU 数据	功能码	1 Byte	0x03	
	寄存器起始地址	2 Bytes	0x00,0x0F	
	寄存器数量	2 Bytes	0x00,0x01	
	响应指令格	式		
	事务标识	2 Bytes	0x00,0x01	
Modbus TCP 句头	协议	2 Bytes	0x00,0x02	
	长度	2 Bytes	0x00,0x08	
	寄存器	1 Byte	0x7C	
参数	状态	1 Byte	0x00	
内部使用	主机 ID	1 Byte	0x09	
	机械爪 ID	1 Byte	0x08	
Modbus RTU 粉埞	功能码	1 Byte	0x03	
	字节数	1 Byte	0x02	
	寄存器值(无错误发生)	2 Bytes	0x00,0x00	

3.4.3. 写入 xArm 机械爪寄存器

3.4.3.1. 寄存器功能

写入寄存器					
	事务标识	2 Bytes	0x00, 0x01		
Modbus TCP 包头	协议	2 Bytes	0x00, 0x02		
	长度	2 Bytes	9+N*x2		
	寄存器	1 Byte	0x7C		
内部使用	主机 ID	1 Byte	0x09		
	机械爪 ID	1 Byte	0x08		
	功能码	1 Byte	0x10		
Modbus RTU 数据	寄存器起始地址	2 Bytes	Address		
	寄存器数量	2 Bytes	N*		
	字节数	1 Byte	N*x2		
	寄存器	N*x2 Bytes	Value		
响应指令格式					
	事务标识	2 Bytes	0x00, 0x01		
	协议	2 Bytes	0x00, 0x02		
Modbus TCP 包头	长度	2 Bytes	0x00, 0x09		
	寄存器	1 Byte	0x7C		
	状态	1 Byte	0x00		
内部使用	主机 ID	1 Byte	0x09		
	机械爪 ID	1 Byte	0x08		
Modbus RTU 数据	功能码	1 Byte	0x10		
	寄存器起始地址	2 Bytes	Address		
	寄存器数量	2 Bytes	N*		

注: N* = 寄存器数量

Address= 寄存器起始地址 (见下面列表)

寄存器:

	寄存器起始地址		寄存器值
设置机械爪模式	0x0101	2bytes	位置模式: 0x0000
使能/关闭机械爪	0x0100	2bytes	使能: 0x0001 停用: 0x0000
设置机械爪位置	0x0700	4bytes	0xFFFFFFB-0x00000320
设置机械爪速度	0x0303	2bytes	0x0000-0x0BB8

3.4.3.2. 示例

1. 设置机械爪模式

设置机械爪模式				
	请求指领	令格式		
	事务标识	2 Bytes	0x00,0x01	
Modbus TCP 句头	协议	2 Bytes	0x00,0x02	
	长度	2 Bytes	0x00,0x0B	
	寄存器	1 Byte	0x7C	
内部使用	主机 ID	1 Byte	0x09	
Modbus RTU 数据	机械爪 ID	1 Byte	0x08	
	功能码	1 Byte	0x10	
	寄存器起始地址	2 Bytes	0x01,0x01	
	寄存器数量	2 Bytes	0x00,0x01	
	字节数	1 Byte	0x02	
	寄存器 (位置模式)			
	0: 位置模式	2 Bytes	0x00,0x00	
	1: 速度模式			
	响应指令	令格式		
	事务标识	2 Bytes	0x00,0x01	
Modbus TCP 句头	协议	2 Bytes	0x00,0x02	
	长度	2 Bytes	0x00,0x09	
	寄存器	1 Byte	0x7C	

参数	状态	1 Byte	0x00
内部使用	主机 ID	1 Byte	0x09
Modbus BTU 数据	机械爪 ID	1 Byte	0x08
	功能码	1 Byte	0x10
	寄存器起始地址	2 Bytes	0x01,0x01
	寄存器数量	2 Bytes	0x00,0x01

2. 使能机械爪

使能机械爪				
	请求指令	令格式		
	事务标识	2 Bytes	0x00,0x01	
Modbus TCP 包头	协议	2 Bytes	0x00,0x02	
	长度	2 Bytes	0x00,0x0B	
	寄存器	1 Byte	0x7C	
内部使用	主机 ID	1 Byte	0x09	
	机械爪 ID	1 Byte	0x08	
	功能码	1 Byte	0x10	
Modbus RTU 数据	寄存器起始地址	2 Bytes	0x01,0x00	
	寄存器数量	2 Bytes	0x00,0x01	
	字节数	1 Byte	0x02	
	寄存器(使能机械爪)	2 Bytes	0x00,0x01	
		令格式		

	事务标识	2 Bytes	0x00,0x01
Modbus TCP 包头,	协议	2 Bytes	0x00,0x02
	长度	2 Bytes	0x00,0x09
	寄存器	1 Byte	0x7C
参数	状态	1 Byte	0x00
内部使用	主机 ID	1 Byte	0x09
	机械爪 ID	1 Byte	0x08
Modbus RTU 数据	功能码	1 Byte	0x10
	寄存器起始地址	2 Bytes	0x01,0x00
	寄存器数量	2 Bytes	0x00,0x01

3. 设置机械爪速度

设置机械爪速度				
请求指令格式				
	事务标识	2 Bytes	0x00,0x01	
Modbus TCP 包头	协议	2 Bytes	0x00,0x02	
	长度	2 Bytes	0x00,0x0B	
	寄存器	1 Byte	0x7C	
内部使用	主机 ID	1 Byte	0x09	
	机械爪 ID	1 Byte	0x08	
Modbus RTU 数据	功能码	1 Byte	0x10	
	寄存器起始地址	2 Bytes	0x03,0x03	

	寄存器数量	2 Bytes	0x00,0x01
	字节数	1 Byte	0x02
	寄存器 (设置速度为 1500r/min)	2 Bytes	0x05,0xDC
	响应指令	令格式	
	事务标识	2 Bytes	0x00,0x01
Modbus TCP 包头	协议	2 Bytes	0x00,0x02
	长度	2 Bytes	0x00,0x09
	寄存器	1 Byte	0x7C
参数	状态	1 Byte	0x00
内部使用	主机 ID	1 Byte	0x09
	机械爪 ID	1 Byte	0x08
Modbus RTU 数据	功能码	1 Byte	0x10
	寄存器起始地址	2 Bytes	0x03,0x03
	寄存器数量	2 Bytes	0x00,0x01

4. 设置机械爪位置

设置机械爪位置				
请求指令格式				
	事务标识	2 Bytes	0x00,0x01	
Modbus TCP 包头	协议	2 Bytes	0x00,0x02	
	长度	2 Bytes	0x00,0x0B	

	寄存器	1 Byte	0x7C
内部使用	主机 ID	1 Byte	0x09
	机械爪 ID	1 Byte	0x08
	功能码	1 Byte	0x10
	寄存器起始地址	2 Bytes	0x07,0x00
Modbus RTU 数据	寄存器数量	2 Bytes	0x00,0x02
	字节数	1 Byte	0x04
	寄存器 (机械爪位置: 400)	4 Bytes	0x00,0x00,0x01,0x90
	响应指令	令格式	
	事务标识	2 Bytes	0x00,0x01
Modbus TCP 包头	协议	2 Bytes	0x00,0x02
	长度	2 Bytes	0x00,0x09
	寄存器	1 Byte	0x7C
参数	状态	1 Byte	0x00
内部使用	主机 ID	1 Byte	0x09
	机械爪 ID	1 Byte	0x08
	功能码	1 Byte	0x10
	寄存器起始地址	2 Bytes	0x07,0x00
	寄存器数量	2 Bytes	0x00,0x02

3.4.4. 机械爪控制

控制机械爪运动的完整流程如下:

(1) 设置机械爪模式

0x00, 0x01, 0x00, 0x02, 0x00, 0x0B, 0x7C, 0x09, 0x08, 0x10, 0x01, 0x01, 0x00, 0x01, 0x02, 0x00, 0x00

(2) 使能机械爪

0x00, 0x01, 0x00, 0x02, 0x00, 0x0B, 0x7C, 0x09, 0x08, 0x10, 0x01, 0x00, 0x00, 0x01, 0x02, 0x00, 0x01

(3) 设置机械爪位置(位置: 400)

0x00, 0x01, 0x00, 0x02, 0x00, 0x0D, 0x7C, 0x09, 0x08, 0x10, 0x07, 0x00, 0x00, 0x02, 0x04, 0x00, 0x00, 0x01, 0x90

3.5. 用 Modbus RTU 通信协议控制 xArm 机械爪

机械爪默认为标准 Modbus RTU 协议,默认波特率 2Mbps,机械爪 ID 为 0x08。目前支持的功能码有: 0x03/0x10。

3.5.1. 读取 xArm 机械爪寄存器

读取保持寄存器				
请求指令格式				
Modbus RTU 数	机械爪 ID	1 Byte	0x08	
据	功能码	1 Byte	0x03	
	寄存器起始地址	2 Bytes	Address	

	寄存器数量	2 Bytes	N*
	Modbus CRC 16	2 Bytes	CRC*
	响应	指令格式	
	机械爪 ID	1 Byte	0x08
Modbus RTU 数	功能码	1 Byte	0x03
据	字节数	1 Byte	N*x2
	寄存器值	N* x2	Value
	Modbus CRC16	2 Bytes	CRC*

注: N* = 寄存器数量

Address= 寄存器起始地址 (见下面列表)

CRC* = 循环冗余校验

寄存器:

	寄存器起始地址	寄存器值	
荘取机械爪状态	0x0000	2 by toc	停止状态: 0x0000 运动状态: 0x0001
37-74 10 0000 1 10 100		2bytes	夹取状态 : 0x0010
获取机械爪位置	0x0702	4bytes	位置取值范围: 0xFFFFFFB-0x00000320
获取机械爪错误	0x000F	2 hvtes	有错误:其他返回值都代表有错误(除0以外)
		Zbytes	无错误: 0×0000

3.5.2. 写入 xArm 机械爪寄存器

写入寄存器			
请求指令格式			
Modbus RTU 数据	机械爪 ID	1 Byte	0x08
	功能码	1 Byte	0x10

	寄存器起始地址	2 Bytes	Address
	寄存器数量	2 Bytes	N*
	字节数		N*x2
	寄存器	N*x2 Bytes	Value
	Modbus CRC 16		CRC*
	响应指领	令格式	
_	机械爪 ID	1 Byte	0x08
	功能码	1 Byte	0x10
Modbus RTU 数据 	寄存器起始地址	2 Bytes	Address
	寄存器数量	2 Bytes	N*
	Modbus CRC 16	2 Bytes	CRC*

注: N* = 寄存器数量

Address= 寄存器起始地址 (见下面列表)

CRC* = 循环冗余校验

寄存器:

	寄存器起始地址		寄存器值
设置机械爪模式	0x0101	2bytes	位置模式: 0x0000
使能/关闭机械爪	0x0100	2bytes	使能: 0x0001 停用: 0x0000
设置机械爪位置	0x0700	4bytes	0xFFFFFFB-0x00000320
设置机械爪速度	0x0303	2bytes	0x0000-0x0BB8

3.5.3. Modbus RTU 示例

1. 设置机械爪模式

设置机械爪模式				
	请求指令格式			
	机械爪 ID	1 Byte	0x08	
	功能码	1 Byte	0x10	
Modbus RTU 数据	寄存器起始地址	2 Bytes	0x01, 0x01	
	寄存器数量	2 Bytes	0x00, 0x01	
	字节数	1 Byte	0x02	
	寄存器			
		2 Bytes	0x00, 0x00	
	(位置模式)			

	Modbus CRC16	2 Bytes	0xDD, 0x11
响应指令格式			
	机械爪 ID	1 Byte	0x08
	功能码	1 Byte	0x10
Modbus RTU 数据	寄存器起始地址	2 Bytes	0x01, 0x01
	寄存器数量	2 Bytes	0x00, 0x01
	Modbus CRC16	2 Bytes	0x51, 0x6C

2. 使能机械爪

使能机械爪				
	请求指	令格式		
	机械爪 ID	1 Byte	0x08	
	功能码	1 Byte	0x10	
	寄存器起始地址	2 Bytes	0x01, 0x00	
Modbus RTU 数据	寄存器数量	2 Bytes	0x00, 0x01	
	字节数	1 Byte	0x02	
	寄存器	2 Bytes	0x00, 0x01	
Modbus CRC16		2 Bytes	0x1D, 0x00	
响应指令格式				
	机械爪 ID	1 Byte	0x08	
	功能码	1 Byte	0x10	
Modbus RTU 数据	寄存器起始地址	2 Bytes	0x01, 0x00	
	寄存器数量	2 Bytes	0x00, 0x01	
	Modbus CRC16	2 Bytes	0x00, 0xAC	

3. 设置机械爪速度

设置机械爪速度					
	机械爪 ID	1 Byte	0x08		
	功能码	1 Byte	0x10		
	寄存器起始地址	2 Bytes	0x03, 0x03		
Modbus RTU 数据	寄存器数量	2 Bytes	0x00, 0x01		
	字节数	1 Byte	0x02		
	寄存器(设置速度为	2 Bytes	0x05, 0xDC		
Modbus CRC16		2 Bytes	0xFD, 0xFA		
	响应指领	令格式			
	机械爪 ID	1 Byte	0x08		
	功能码	1 Byte	0x10		
Modbus RTU 数据	寄存器起始地址	2 Bytes	0x03, 0x03		
	寄存器数量	2 Bytes	0x00, 0x01		
	Modbus CRC16	2 Bytes	0xF1, 0x14		

2. 设置机械爪位置

设置机械爪位置				
	机械爪 ID	1 Byte	0x08	
	功能码	1 Byte	0x10	
	寄存器起始地址	2 Bytes	0x07, 0x00	
Modbus RTU 数据	寄存器数量	2 Bytes	0x00, 0x02	
	字节数	1 Byte	0x04	
寄存	寄存器(机械爪位置:400)	4 Bytes	0x00, 0x00, 0x01, 0x90	
Modbus CRC16		2 Bytes	0xFA, 0xFF	
响应指令格式				
机械爪 ID		1 Byte	0x08	
	功能码	1 Byte	0x10	
Modbus RTU 数据	寄存器起始地址	2 Bytes	0x07, 0x00	
	寄存器数量	2 Bytes	0x00, 0x02	
	Modbus CRC16	2 Bytes	0x40, 0x25	

4.报警与处理

报警处理方式可采用重新上电,步骤如下(重新上电需要走完以下所有步骤):

1. 通过控制箱上的紧急停止按钮重新对机械臂上电。

2. 使能机械臂。

xArm Studio 使能方式:点击报错弹窗的引导按钮或者首页的使能机械臂按钮。

xArm-Python-SDK 使能方式:参照报警处理方式

xArm-ROS 库: 查看相关文档 https://github.com/xArm-Developer/xarm ros

3. 重新使能机械爪

若多次重新上电无效后请寻找 UFACTORY 团队支持。

软件报错代码	报警代码	报警处理
<u> </u>	机械爪电流检测异常	
69	0x09	请通过控制器上的紧急停止按钮重启机械臂

G11	0x0B	机械爪电流过大
		明点击 佣以 里利伊比加城八
G12	0x0C	机械爪速度过大
012	0x0C	请点击"确认"重新使能机械爪
614	0.05	机械爪位置指令过大
G14	OXOE	请点击"确认"重新使能机械爪
		机械爪 EEPROM 读写错误
G15	0x0F	请点击"确认"重新使能机械爪
		机械爪驱动 IC 硬件导常
G20	0x14	请占丰"确认" 黄新佑能机械爪
G21	0x15	
		请点击"确认"重新使能机械八
		机械爪电机位置偏差过大
G23	0x17	请检查机械爪运动是否受阻,如机械爪运动未受阻,请点击"确认"
		重新使能机械爪
	0.40	机械爪指令超软件限位
G25 0x19		请检测机械爪指令是否设置超出软件限制
		机械爪反馈位置招限软件限位
G26	0x1A	
		机械爪驱动器过载
G33	0x21	
624	0.00	机械爪电机过载
G34	0x22	
636	0.04	机械爪驱动器类型错误
G36 0x24		请点击"确认"重新使能机械爪
上表中未出	出现的报警代码:重	這新使能机械臂和机械爪。如频繁出现,请联系技术支持。

xArm-Python-SDK 报警处理方式:

在用 Python 库设计机械臂运动规划时,如果机械臂出现故障,需要手动清除错误。清除 错误后,仍需重新使能机械臂,并将机械臂设置为运动模式,方可使机器人正常运动。此时 根据上报的错误信息,应重新调整机械臂的路径规划。

Python 库清除错误步骤: (如下接口,详细说明请查看 GitHub)

1. 清除错误: clean_error()

2. 重新使能机械臂: motion_enable(true)

3. 设置运动状态: set_state(0)

5.xArm 机械爪技术规格

名称	说明
额定电源电压	24V DC
绝对最大电源电压	28V DC
静态功耗(最低功耗)	1.5W
峰值电流	1.5A
工作范围	0-84mm
最大抓取力度	30N
质量	802g
通信方式	RS-485
通信协议	Modbus RTU
可编程参数	位置,速度
反馈	位置

6.售后服务

1. 售后政策:

对于产品的质量保证以及维修和退换货的详情,见官网的售后政策:

https://www.cn.ufactory.cc/warrenty

2. 售后服务流程:

(1) 联系技术支持(support@ufactory.cc),确认产品需要寄回维修,确定需要寄回的 部件。

(2) 我司根据售后政策, 判定产品保修状况, 付费或免费维修。

(3) 维修、测试完成后,我们会将产品寄回,一般情况下,整个维修流程大约需要 1-2 周。注意:

当需要将产品寄回我司进行维修时,需要将产品用包装箱打包好,避免在运输过程中发生不必要的碰撞,导致机械爪受损。